Using Opik with watsonx
Opik integrates with watsonx to provide a simple way to log traces for all watsonx LLM calls. This works for all watsonx models.
Creating an account on Comet.com
Comet provides a hosted version of the Opik platform, simply create an account and grab you API Key.
You can also run the Opik platform locally, see the installation guide for more information.
%pip install --upgrade opik litellm
import opik
opik.configure(use_local=False)
Preparing our environment
First, we will set up our watsonx API keys. You can learn more about how to find these in the Opik watsonx integration guide.
import os
os.environ["WATSONX_URL"] = "" # (required) Base URL of your WatsonX instance
# (required) either one of the following:
os.environ["WATSONX_API_KEY"] = "" # IBM cloud API key
os.environ["WATSONX_TOKEN"] = "" # IAM auth token
# optional - can also be passed as params to completion() or embedding()
# os.environ["WATSONX_PROJECT_ID"] = "" # Project ID of your WatsonX instance
# os.environ["WATSONX_DEPLOYMENT_SPACE_ID"] = "" # ID of your deployment space to use deployed models
Configure LiteLLM
Add the LiteLLM OpikTracker to log traces and steps to Opik:
import litellm
import os
from litellm.integrations.opik.opik import OpikLogger
from opik import track
from opik.opik_context import get_current_span_data
os.environ["OPIK_PROJECT_NAME"] = "watsonx-integration-demo"
opik_logger = OpikLogger()
litellm.callbacks = [opik_logger]
Logging traces
Now each completion will logs a separate trace to LiteLLM:
# litellm.set_verbose=True
prompt = """
Write a short two sentence story about Opik.
"""
response = litellm.completion(
model="watsonx/ibm/granite-13b-chat-v2",
messages=[{"role": "user", "content": prompt}],
)
print(response.choices[0].message.content)
The prompt and response messages are automatically logged to Opik and can be viewed in the UI.
Using it with the track
decorator
If you have multiple steps in your LLM pipeline, you can use the track
decorator to log the traces for each step. If watsonx is called within one of these steps, the LLM call with be associated with that corresponding step:
@track
def generate_story(prompt):
response = litellm.completion(
model="watsonx/ibm/granite-13b-chat-v2",
messages=[{"role": "user", "content": prompt}],
metadata={
"opik": {
"current_span_data": get_current_span_data(),
},
},
)
return response.choices[0].message.content
@track
def generate_topic():
prompt = "Generate a topic for a story about Opik."
response = litellm.completion(
model="watsonx/ibm/granite-13b-chat-v2",
messages=[{"role": "user", "content": prompt}],
metadata={
"opik": {
"current_span_data": get_current_span_data(),
},
},
)
return response.choices[0].message.content
@track
def generate_opik_story():
topic = generate_topic()
story = generate_story(topic)
return story
generate_opik_story()
The trace can now be viewed in the UI: