
Sagemaker

Introduction

How does Comet work with Sagemaker?

Logging Data from the Sagemaker SDK

Sagemaker is Amazon's end-to-end machine learning service that targets a large swath of data science
and machine learning practitioners. With Sagemaker, data scientists and developers can build and train
machine learning models, and directly deploy them into a production-ready hosted environment.
Sagemaker's product offerings span the needs of data/business analysts, data scientists, and machine
learning engineers.

Comet is an excellent complement to Sagemaker, enhancing the developer experience by allowing
users to easily track experiments, collaborate with team members, and visualize results in an intuitive
and easy-to-understand way while using the frameworks and tools that they are most comfortable
with. Additionally, the platform provides a wide range of customization options, including the ability to
create custom visualizations and dashboards, so that users can tailor their experience to meet their
specific needs.

By using Comet, users can streamline their workflows while benefiting from Sagemaker's powerful
infrastructure orchestration and model deployment capabilities.

Comet requires minimal changes to your existing Sagemaker workflow in order to get up and running.
Let’s take a look at a simple example that uses the Sagemaker SDK and Notebook instances to run a
custom script.

├── src
│ ├── train.py
│ └── requirements.txt
└── launch.ipynb

1

1. Pass in your Comet Credentials to the Sagemaker Estimator using the argumentexperimentexperiment

Your directory would contain the model specific code needed to execute your training run, while
 would run in your Notebook instance, and contain code related to configuring and
launching your job with the Sagemaker SDK.

To enable Comet logging in this workflow, simply

1. Add as a dependency in your file
2. Import the library of the script
3. Create a Comet object within the training script

srcsrc

comet_mlcomet_ml requirement.txtrequirement.txt
comet_mlcomet_ml train.pytrain.py

ExperimentExperiment

launch.ipynblaunch.ipynb

2

To log your Sagemaker run with Comet, execute it as you normally would using . Comet
will handle the logging for you. If you want to customize the logged data, such as confusion matrices,
gradient histograms, or multimedia data, add the relevant functionality to the script using any
of the logging methods available in the Experiment object.

For example, we can log predictions and images to Comet’s Interactive Confusion Matrix from our
script by adding the following function.

Since Comet runs in the same environment as your training script, it has access to all the Sagemaker
environment variables as well. This allows you to log Sagemaker specific metadata such as the Training
Job Name, S3 Resource URIs, Instance Type etc.

If you would like to see examples of how Comet and Sagemaker can be used together, please visit our
Sagemaker Examples page.

Note: The extent of Comet's auto-logging capabilities can vary depending on the framework
being used. For more information on logging for specific frameworks, please refer to our
integration documentation.

estimator.fitestimator.fit

train.pytrain.py

3

https://www.comet.com/production/docs-v2/api-and-sdk/python-sdk/reference/Experiment/
https://github.com/comet-ml/comet-examples/tree/master/SageMaker
https://www.comet.com/docs/v2/integrations/overview/

Migrating Existing Sagemaker Training Jobs to Comet

Another option for logging data from Sagemaker runs to Comet is to use Comet’s built-in Sagemaker
integration to migrate data from completed Sagemaker Training Jobs. The following snippet can be run
in a Sagemaker Notebook instance or standalone script.

Find out more about migrating Sagemaker runs in our Sagemaker Examples page.

Why use Comet with Sagemaker?

Simplicity

Comet is a comprehensive and user-friendly machine learning platform that emphasizes a lightweight,
API-focused approach. Its features are accessible through a single SDK, which is available in multiple
programming languages, as well as through a REST API.

Comet serves as a knowledge base for ML projects, offering practitioners a single tool to log, visualize,
and share any type of data related to their experiments. This enables them to spend less time piecing
together disparate technologies and infrastructure for tracking ML runs, and more time developing
models.

4

https://github.com/comet-ml/comet-examples/tree/master/SageMaker

In contrast, bundled platforms are typically composed of different services from the platform provider.
For example, Sagemaker requires users to understand IAM roles and permissions to enable the use of
specific services, knowledge of the AWS S3 SDK to access run assets such as plots or models, and
Cloudwatch to understand resource utilization. Users tend to be forced into using multiple services to
accomplish the singular task of training a model.

Extensibility

Comet integrates with a variety of external libraries and tools, allowing users to customize the compo-
nents of the ML stack according to their specific requirements. The pace of development in ML is rapid,
and it is difficult for any single organization to anticipate what workflows, tools, and best practices will
be dominant in the future. The extensibility of the Comet platform ensures that it will continue to
adapt and evolve with the field of ML.

Bundled platforms such as Sagemaker offer a wide range of features that cover a broad set of
functions. However, it is challenging to keep this broad feature set up to date since every new
component needs to work with the rest of the platform. Additionally the choice of components being
integrated into the platform might not match every user’s needs or expectations.

5

On the other hand, best-of-breed services offer greater flexibility and customization options for those
with specific needs. These services can be tailored to meet the unique requirements of individual
projects, enabling users to achieve greater precision and accuracy in their results.

To find out more about our supported integrations, please visit the integrations page in our
documentation.

Avoiding Vendor Lock In

When committing to an end-to-end platform, it often means that your workflow is closely tied to the
product offerings of the platform. This can limit your flexibility in terms of the technologies you can use
to develop your model. Interested in using TPUs or IPU’s instead of GPUs? Do you want to use a way of
storing data that isn’t S3? These tasks would not be possible when using a bundled platform, and
would require a costly migration to another provider.

However, Comet stands out in that it is infrastructure agnostic. This means that code which utilizes
Comet can run in any cloud provider's environment, as well as on-premise. This flexibility enables
users to customize their infrastructure according to their specific needs, without worrying about
vendor lock-in.

Sagemaker and Comet offer complementary sets of tools for building a powerful machine learning
platform. Sagemaker excels in resource management, computing, and deployment, while Comet leads
in experiment management, artifact management, and production monitoring. Comet also provides a
flexible user interface for analysis and reporting. By using both Comet and Sagemaker together, teams
can access a comprehensive set of tools that enable them to effectively and efficiently manage,
monitor, and deploy their ML models.

Conclusion

6

https://www.comet.com/docs/v2/integrations/overview/

