Skip to content

comet_ml.API

The API class is used as a Python interface to the Comet.ml Python API.

You can use an instance of the API() class to quickly and easily access all of your logged information at comet, including metrics, parameters, tags, and assets.

Example calls to get workspace, project, and experiment data:

  • API.get(): gets all of your personal workspaces
  • API.get(WORKSPACE): gets all of your projects from WORKSPACE
  • API.get(WORKSPACE, PROJECT_NAME): get all APIExperiments in WORKSPACE/PROJECT
  • API.get_experiment(WORKSPACE, PROJECT_NAME, EXPERIMENT_KEY): get an APIExperiment
  • API.get_experiment("WORKSPACE/PROJECT_NAME/EXPERIMENT_KEY"): get an APIExperiment
  • API.get_experiments(WORKSPACE): get all APIExperiments in WORKSPACE
  • API.get_experiments(WORKSPACE, PROJECT_NAME): get all APIExperiments in WORKSPACE/PROJECT
  • API.get_experiments(WORKSPACE, PROJECT_NAME, PATTERN): get all APIExperiments in WORKSPACE/PROJECT/PATTERN
Example
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
import comet_ml

comet_ml.login()
api = comet_ml.API()

## Return all of my workspace names in a list:
api.get()

## Get an APIExperiment:
experiment = api.get("cometpublic/comet-notebooks/example 001")

## Get metrics:
experiment.get_metrics("train_accuracy")

The API instance also gives you access to the low-level Python API function calls:

1
api.delete_experiment(experiment_key)

For more usage examples, see Comet Python API examples.

Functions

__init__

__init__(api_key=None, cache=True, version='v2')

Application Programming Interface to the Comet Python interface.

Parameters:

  • api_key (str, default: None ) –

    Your private COMET_API_KEY.

  • cache (bool, default: True ) –

    Whether to cache on values or not.

  • version (str, default: 'v2' ) –

    The version of the REST API to use.

Note

api_key may be defined in environment (COMET_API_KEY) or in a .comet.config file.

Example
import comet_ml
from comet_ml.api import API

comet_ml.login()
api = API()
api.get("my-workspace")

add_registry_model_version_stage

add_registry_model_version_stage(workspace, registry_name, version, stage)

Adds a stage to a registered model version.

This method has been deprecated as stage has been replaced by status and a new comet_ml.Model object was introduced. We recommend using the comet_ml.API.get_model method to get the Model object and then using model.set_status(version='<version>', status='<status>')

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

  • version (str) –

    The version of model to update.

  • stage (str) –

    "production", or "staging", etc.

archive_experiment

archive_experiment(experiment_key)

Archive one experiment.

Parameters:

  • experiment_key (str) –

    the experiment key to archive

archive_experiments

archive_experiments(experiment_keys)

Archive list of experiments.

Parameters:

  • experiment_keys (list) –

    the experiment keys to archive

clear_cache

clear_cache()

Used when cache is on, but you have added/changed data outside of this API instance.

Note

You could also just start with no cache.

Example
1
2
3
4
import comet_ml

comet_ml.login()
api = comet_ml.API(cache=False)

Or, if you had started with cache, turn it off:

>>> api = API(cache=True)
>>> api.do_cache(False)

create_project

create_project(workspace, project_name, project_description=None, public=False)

Create a project.

Parameters:

  • project_name (str) –

    The project name.

  • project_description (str, default: None ) –

    The description for this project.

  • public (bool, default: False ) –

    If True the project will be public.

create_project_share_key

create_project_share_key(project_id)

Get the share keys for a private project ID.

Parameters:

  • project_id (str) –

    The ID of the project

Example
import comet_ml

comet_ml.login()
api = comet_mlAPI()
SHARE_KEY = api.create_project_share_key(PROJECT_ID)

See also: API.get_project_share_keys(), and API.delete_project_share_key().

delete_experiment

delete_experiment(experiment_key)

Delete one experiment.

Parameters:

  • experiment_key (str) –

    The experiment key for the experiment to delete.

delete_experiments

delete_experiments(experiment_keys)

Delete list of experiments.

Parameters:

  • experiment_keys (list) –

    a list of experiment keys to delete.

delete_project

delete_project(
    workspace=None, project_name=None, project_id=None, delete_experiments=False
)

Delete a project.

Parameters:

  • workspace (str, default: None ) –

    the name of the workspace (required if project_id not given)

  • project_name (str, default: None ) –

    the name of the project (required if project_id not given)

  • project_id (str, default: None ) –

    the project id (required, if workspace and project name not given)

  • delete_experiments (bool, default: False ) –

    if True, delete all of the experiments, too

delete_project_share_key

delete_project_share_key(project_id, share_key)

Delete a share key for a private project ID.

Parameters:

  • project_id (str) –

    The ID of the project

  • share_key (str) –

    The share key to delete

Example
import comet_ml

comet_ml.login()
api = comet_ml.API()
SHARE_KEYS = api.get_project_share_keys(PROJECT_ID)

api.delete_project_share_key(PROJECT_ID, SHARE_KEYS[0])

See also: API.get_project_share_keys(), and API.create_project_share_key().

delete_registry_model

delete_registry_model(workspace, registry_name)

Deletes a registered model.

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

delete_registry_model_version

delete_registry_model_version(workspace, registry_name, version)

Deletes a registered model version.

Parameters:

  • workspace (str) –

    The name of the workspace

  • registry_name (str) –

    The name of the model

  • version (str) –

    The version of model to update

delete_registry_model_version_stage

delete_registry_model_version_stage(workspace, registry_name, version, stage)

Removes a stage from a registered model version.

This method has been deprecated as stage has been replaced by status and a new comet_ml.Model object was introduced. We recommend using the comet_ml.API.get_model method to get the Model object and then using model.set_status(version='<version>', status='<status>')

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

  • version (str) –

    The version of model to update.

  • stage (str) –

    "production", or "staging", etc.

do_cache

do_cache(*endpoints)

Cache the given endpoints.

Example
1
2
3
4
5
import comet_ml

comet_ml.login()
api = comet_ml.API()
api.do_cache("experiments", "projects")

do_not_cache

do_not_cache(*endpoints)

Do not cache the given endpoints.

Example
1
2
3
4
5
6
import comet_ml

comet_ml.login()
api = comet_ml.API()

api.do_not_cache("experiments", "projects")

download_experiment_asset

download_experiment_asset(
    experiment_key: str, asset_id: str, output_path: str
) -> None

Download an experiment (or a model registry) asset to the specified output_path.

Parameters:

  • experiment_key (str) –

    The experiment unique key to download from.

  • asset_id (str) –

    The asset ID.

  • output_path (str) –

    Where to download the asset.

Raises:

  • CometRestApiException

    if the asset or experiment_key is not found.

  • OSError

    if the asset cannot be written to the output_path.

download_registry_model

download_registry_model(
    workspace,
    registry_name,
    version=None,
    output_path="./",
    expand=True,
    stage=None,
)

Download and save all files from the registered model.

This method has been deprecated as stage has been replaced by status and a new comet_ml.Model object was introduced. We recommend using the comet_ml.API.get_model method to get the Model object and then using comet_ml.Model.download

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

  • version (str, default: None ) –

    The version string of the model.

  • output_path (str, default: './' ) –

    The output directory

  • expand (bool, default: True ) –

    If True, the downloaded zipfile is unzipped; if False, then the zipfile is copied to the output_path.

  • stage (str, default: None ) –

    A textual tag such as "production" or "staging".

gen_experiments

gen_experiments(workspace, project_name=None, pattern=None)

Get APIExperiments by workspace, workspace + project, or workspace + project + regular expression pattern.

get

get(
    workspace: Optional[str] = None,
    project_name: Optional[str] = None,
    experiment: Optional[str] = None,
)

Get the following items:

  • list of workspace names, given no arguments
  • list of project names, given a workspace name
  • list of experiment names/keys, given workspace and project names
  • an experiment, given workspace, project, and experiment name/key

Parameters:

  • workspace (str, default: None ) –

    Workspace name.

  • project_name (str, default: None ) –

    Project name.

  • experiment (str, default: None ) –

    Experiment key.

Note

workspace, project_name, and experiment can also be given as a single string, delimited with a slash.

get_account_details

get_account_details()

Return the username and the default workspace name for the authorized user.

Returns:

  • dict

    Returns dictionary object of the format:

    {
    'userName': 'USERNAME',
    'defaultWorkspaceName': 'WORKSPACE',
    }
    

get_archived_experiment

get_archived_experiment(workspace, project_name, experiment)

Get a single archived APIExperiment by workspace, project, experiment.

Parameters:

  • workspace (str) –

    Workspace name

  • project_name (str) –

    Project name

  • experiment (str) –

    Experiment key

get_archived_experiments

get_archived_experiments(workspace, project_name=None, pattern=None)

Get archived APIExperiments by workspace, workspace + project, or workspace + project + regular expression pattern.

Parameters:

  • workspace (str) –

    Workspace name

  • project_name (str, default: None ) –

    The project name, if ommitted all projects will be searched

  • pattern (str, default: None ) –

    Regex pattern to apply on the experiment name or the experiment key

get_artifact_details

get_artifact_details(workspace=None, artifact_name=None, artifact_id=None)

Returns the details of a single artifact identified either by the workspace name + the artifact name or by its unique artifact ID.

Parameters:

  • workspace (str, default: None ) –

    The name of the workspace

  • artifact_name (str, default: None ) –

    The name of the artifact

  • artifact_id (str, default: None ) –

    The unique ID of the artifact, for example 6194e719-f596-48e7-8cca-8530c16dd007

Example
1
2
3
4
5
6
7
import comet_ml

comet_ml.login()
api = comet_ml.API()

artifact_details = api.get_artifact_details("demo", "demo-artifact")
print(artifact_details)

The print statement above prints the following output:

{'artifactId': '6194e719-f596-48e7-8cca-8530c16dd007',
    'project': 'demo-artifacts',
    'type': 'dataset',
    'name': 'demo-artifact',
    'description': None,
    'latestVersion': '2.0.0',
    'tags': [],
    'isPublic': False,
    'emoji': None,
    'sizeInBytes': 21113,
    'versions': [{'artifactVersionId': 'a8286090-c637-4270-99ab-25b18676a035',
            'version': '1.0.0',
            'owner': 'lothiraldan',
            'metadata': None,
            'createdFrom': None,
            'sizeInBytes': 0,
            'state': None,
            'added': 1621948911721,
            'alias': ['current-production'],
            'tags': ['production']},
        {'artifactVersionId': 'bf778c64-a97c-4bff-9752-7fa6bfebbe2e',
            'version': '2.0.0',
            'owner': 'lothiraldan',
            'metadata': None,
            'createdFrom': None,
            'sizeInBytes': 21113,
            'state': None,
            'added': 1621948972987,
            'alias': ['Latest'],
            'tags': ['staging']}]}

get_artifact_files

get_artifact_files(
    workspace=None,
    artifact_name=None,
    artifact_id=None,
    version=None,
    alias=None,
)

Returns the files of a single artifact version. The artifact is identified either by the workspace name + the artifact name or by its unique artifact ID. The artifact version is identified either by an explicit version or by an explicit alias.

Parameters:

  • workspace (str, default: None ) –

    The name of the workspace

  • artifact_name (str, default: None ) –

    The name of the artifact

  • artifact_id (str, default: None ) –

    The unique ID of the artifact, for example 6194e719-f596-48e7-8cca-8530c16dd007

  • version (str, default: None ) –

    The version number of the artifact version you want

  • alias (str, default: None ) –

    The alias of the artifact version you want

Example
1
2
3
4
5
6
7
import comet_ml

comet_ml.login()
api = comet_ml.API()

artifact_files = api.get_artifact_files("demo", artifact_name="demo-artifact", version="2.0.0")
print(artifact_files)

The print statement above return the following:

{'files': [{'artifactId': '6194e719-f596-48e7-8cca-8530c16dd007',
    'artifactVersionId': 'bf778c64-a97c-4bff-9752-7fa6bfebbe2e',
    'assetId': '6aa914ffbee94e11b69445383d7732f4',
    'fileName': 'logo.png',
    'fileSize': 21113,
    'link': None,
    'dir': None,
    'type': 'unknown',
    'metadata': None}]}

To query by alias you can run:

1
2
3
4
5
6
import comet_ml

comet_ml.login()
api = comet_ml.API()
artifact_files = api.get_artifact_files("demo", artifact_name="demo-artifact", alias="current-production")
print(artifact_files)

which will print the following:

{'files': [{'artifactId': '6194e719-f596-48e7-8cca-8530c16dd007',
    'artifactVersionId': 'a8286090-c637-4270-99ab-25b18676a035',
    'assetId': 'dea243de41714a48961f725dbbe4d214',
    'fileName': 'file',
    'fileSize': 0,
    'link': 's3://bucket/dir/file',
    'dir': None,
    'type': 'unknown',
    'metadata': None}]}

get_artifact_list

get_artifact_list(workspace, artifact_type=None)

Return the list of artifacts in a given workspace. Could be optionally filtered by a specific type.

Parameters:

  • workspace (str) –

    The name of the workspace

  • artifact_type (str, default: None ) –

    If provided only returns Artifacts with the given type

Example
1
2
3
4
5
6
7
import comet_ml

comet_ml.login()
api = comet_ml.API()
artifacts = api.get_artifact_list("demo")

print(artifacts)

get_default_workspace

get_default_workspace()

Get the default workspace name.

Example
1
2
3
4
5
import comet_ml

comet_ml.login()
api = comet_ml.API()
workspace = api.get_default_workspace()

get_experiment

get_experiment(workspace, project_name, experiment)

Get a single APIExperiment by workspace, project, experiment.

Parameters:

  • workspace (str) –

    Workspace name

  • project_name (str) –

    Project name

  • experiment (str) –

    Experiment key

get_experiment_by_id

get_experiment_by_id(experiment)

get_experiment_by_key

get_experiment_by_key(experiment_key)

Get an APIExperiment by experiment key.

Parameters:

  • experiment_key (str) –

    Experiment key

get_experiments

get_experiments(workspace, project_name=None, pattern=None)

Get APIExperiments by workspace, workspace + project, or workspace + project + regular expression pattern.

Parameters:

  • workspace (str) –

    Workspace name

  • project_name (str, default: None ) –

    The project name, if ommitted all projects will be searched

  • pattern (str, default: None ) –

    Regex pattern to apply on the experiment name or the experiment key

get_latest_registry_model_version_details

get_latest_registry_model_version_details(
    workspace: str,
    registry_name: str,
    stage: Optional[str] = None,
    version_major: Optional[int] = None,
    version_minor: Optional[int] = None,
) -> Dict[str, Any]

Return details about the latest model registry version, including its asset list.

This method has been deprecated as stage has been replaced by status and a new comet_ml.Model object was introduced. We recommend using the comet_ml.API.get_model method to get the Model object and then using comet_ml.Model.find_versions

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

  • version_major (int, default: None ) –

    The major part of version string of the model.

  • version_minor (int, default: None ) –

    The minor part of version string of the model.

  • stage (str, default: None ) –

    A textual tag such as "production" or "staging".

Example

Running the following code:

1
2
3
4
5
6
7
import comet_ml

comet_ml.login()
api = comet_ml.API()
res = api.get_latest_registry_model_version_details("myworkspace", "model-name")

print(res)

will print the following dictionary:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
{
    "registryModelId": "someRegistryModelId",
    "modelName": "someModelName",
    "description": "someDescription",
    "isPublic": "[Boolean]",
    "createdAt": "[long, when this model was created in the DB]",
    "lastUpdated": "[long, last time this model was updated in the DB]",
    "userName": "someUserName",
    "versions": [
        {
            "registryModelItemId": "someRegistryModelItemId",
            "experimentModel": {
                "experimentModelId": "someExperimentModelId",
                "experimentModelName": "someExperimentModelName",
                "experimentKey": "someExperimentKey"
            },
            "version": "someVersion",
            "comment": "someComment",
            "stages": [
                "production",
                "staging"
            ],
            "userName": "someUserName",
            "createdAt": "[long, when this model item was created in the DB]",
            "lastUpdated": "[long, last time this model item was updated in the DB]",
            "assets": [
                {
                    "fileName": "someFileName",
                    "fileSize": "[Long, file size]",
                    "runContext": "someRunContext",
                    "step": "[Integer, step asset was logged during]",
                    "link": "link to download asset file",
                    "createdAt": "[Long, timestamp asset was created in DB]",
                    "dir": "someDirectory",
                    "canView": "[Boolean, whether the asset is viewable as an image]",
                    "audio": "[Boolean, whether the asset is an audio file]",
                    "histogram": "[Boolean, whether the asset is a histogram file]",
                    "image": "[Boolean, whether the asset was stored as an image]",
                    "type": "the type of asset",
                    "metadata": "Metadata associated with the asset",
                    "assetId": "someAssetId"
                }
            ]
        }
    ]
}

get_metrics_df

get_metrics_df(
    experiment_keys: List[str],
    metrics: List[str],
    x_axis: str = "step",
    interpolate: bool = True,
) -> Optional[pd.DataFrame]

Get a DataFrame of multiple metrics from a set of experiments across a specified x-axis.

Parameters:

  • experiment_keys (List[str]) –

    A list of experiment keys.

  • metrics (List[str]) –

    a list of metric names.

  • x_axis (step | epoch | duration, default: 'step' ) –

    a specifield field that metric values will be based on.

  • interpolate (bool, default: True ) –

    whether to apply linear interpolation to numerical columns or not.

Returns:

  • Optional[DataFrame]

    pd.DataFrame: A Pandas DataFrame of metrics from a set of experiments across a specified x-axis

get_metrics_for_chart

get_metrics_for_chart(
    experiment_keys, metrics=None, parameters=None, independent=True, full=False
)

Get multiple metrics and parameters from a set of experiments. This method is designed to make custom charting easier.

Parameters:

  • experiment_keys (list) –

    a list of experiment keys

  • metrics (list, default: None ) –

    List of metric names (e.g., "loss")

  • parameters (list, default: None ) –

    List of parameter names (e.g., "learning-rate")

  • independent (bool, default: True ) –

    get independent results?

  • full (bool, default: False ) –

    Fetch the full result?

Returns:

  • dict

    A dictionary of experiment keys with the following structure. {EXPERIMENT_KEY: {'params'} will be None if there are no parameters passed in.

Note

You should pass in a list of metric names, or a list of parameter names, or both.

Example
1
2
3
4
5
6
7
import comet_ml

comet_ml.login()
api = comet_ml.API()
res = api.get_metrics_for_chart([experiment_key1, experiment_key2, ...],
                                    ["loss"], ["hidden_layer_size"])
print(res)

The print statement above would return an object like:

{EXPERIMENT_KEY: {
'experiment_key': EXPERIMENT_KEY,
'steps': STEPS,
'epochs': None,
'metrics': [
    {'metricName': 'loss',
    'values': [VALUE, ...],
    'steps': [STEP, ...],
    'epochs': [EPOCH, ...],
    'timestamps': [TIMESTAMP, ...],
    'durations': [DURATION, ...],
    }],
'params': {'hidden_layer_size': VALUE, ...},
}, ...}

get_model

get_model(workspace: str, model_name: str) -> model.Model

Get a Model API object corresponding to a given model

Parameters:

  • workspace (str) –

    The name of workspace.

  • model_name (str) –

    The name of registered model.

get_model_registry_version_assets

get_model_registry_version_assets(
    workspace, registry_name, version=None, stage=None
)

Return details about a single model registry version, including its asset list.

This method has been deprecated as stage has been replaced by status and a new comet_ml.Model object was introduced. We recommend using the comet_ml.API.get_model method to get the Model object and then using comet_ml.Model.get_assets

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

  • version (str, default: None ) –

    The version string of the model.

  • stage (str, default: None ) –

    A textual tag such as "production" or "staging".

Example

Running the following code

1
2
3
4
5
6
7
import comet_ml

comet_ml.login()
api = API()
res = api.get_model_registry_version_assets("myworkspace", "model-name")

print(res)

will print the dictionary:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
{
    "registryModelItemId": "someRegistryModelItemId",
    "experimentModel": {
        "experimentModelId": "someExperimentModelId",
        "experimentModelName": "someExperimentModelName",
        "experimentKey": "someExperimentKey"
    },
    "version": "someVersion",
    "comment": "someComment",
    "stages": ["production", "staging"],
    "userName": "someUserName",
    "createdAt": "[long, when this model item was created in the DB]",
    "lastUpdated": "[long, last time this model item was updated in the DB]",
    "assets": [
        {
            "fileName": "someFileName",
            "fileSize": "[Long, file size]",
            "runContext": "someRunContext",
            "step": "[Integer, step asset was logged during]",
            "link": "link to download asset file",
            "createdAt": "[Long, timestamp asset was created in DB]",
            "dir": "someDirectory",
            "canView": "[Boolean, whether the asset is viewable as an image]",
            "audio": "[Boolean, whether the asset is an audio file]",
            "histogram": "[Boolean, whether the asset is a histogram file]",
            "image": "[Boolean, whether the asset was stored as an image]",
            "type": "the type of asset",
            "metadata": "Metadata associated with the asset",
            "assetId": "someAssetId",
        }
    ],
}

get_panel_experiment_colors

get_panel_experiment_colors() -> PanelColorMap

Returns a dictionary of experiment keys and their associated colors.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_experiment_keys

get_panel_experiment_keys() -> List[str]

Returns the experiment keys associated with the workspace/ project_name associated with this panel.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_experiments

get_panel_experiments() -> List[APIExperiment]

Returns the experiments associated with the workspace/ project_name associated with this panel.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_height

get_panel_height() -> int

Returns a height of the panel (in pixels).

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_metric_colors

get_panel_metric_colors() -> PanelColorMap

Returns a dictionary of metrics and their associated colors.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_metrics_names

get_panel_metrics_names() -> List[str]

Returns the metric names for all experiments in the workspace/project_name associated with this panel.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_options

get_panel_options() -> Dict[str, Any]

Returns the panel options as a dictionary.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_project_id

get_panel_project_id() -> str

Returns the project_id associated with this panel.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_project_name

get_panel_project_name() -> Union[str, None]

Returns the project name associated with this panel.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_size

get_panel_size() -> Tuple[int, int]

Returns a tuple of the width and height of the panel (in pixels). (width, height)

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_width

get_panel_width() -> int

Returns a width of the panel (in pixels).

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_panel_workspace

get_panel_workspace() -> Union[str, None]

Returns the project name associated with this panel.

This method is designed for use inside a Comet Panel. For more information, please see: Python Panels

get_project

get_project(workspace, project_name)

Return the details of a project in a workspace.

Parameters:

  • workspace (str) –

    The name of the workspace

  • project_name (str) –

    The name of the project

Returns:

  • dict

    Dict of project details if the workspace/project exists, otherwise None.

Example
import comet_ml

comet_ml.login()
api = comet_ml.API()
print(api.get_project("workspace", "project-name"))

get_project_by_id

get_project_by_id(project_id)

Return the details of a project given its project id.

Parameters:

  • project_id (str) –

    The ID of the project

Returns:

  • dict

    Dict of project details if the project_id exists, otherwise None.

Example
import comet_ml

comet_ml.login()
api = comet_ml.API()
print(api.get_project_by_id("2727432637263"))

get_project_notes

get_project_notes(workspace, project_name)

Get the notes of a project.

Parameters:

  • workspace (str) –

    The name of the workspace

  • project_name (str) –

    The name of the project

Returns:

  • str

    Project notes

Example
import comet_ml

comet_ml.login()
api = comet_ml.API()
notes = api.get_project_notes("my-workspace", "my-project")

print(notes)

get_project_share_keys

get_project_share_keys(project_id)

Get the share keys for a private project ID.

Parameters:

  • project_id (str) –

    The ID of the project

import comet_ml

comet_ml.login()
api = comet_ml.API()
SHARE_KEYS = api.get_project_share_keys(PROJECT_ID)

See also: API.create_project_share_key(), and API.delete_project_share_key().

get_projects

get_projects(workspace)

Return the details of the projects in a workspace.

Parameters:

  • workspace (str) –

    The name of the workspace

Returns:

  • list

    List of project details in workspace.

get_query_variables

get_query_variables(workspace, project_name)

Return the query variables of a project in a workspace. Used with API.query().

Parameters:

  • workspace (str) –

    The name of the workspace

  • project_name (str) –

    The name of the project

Returns:

  • list

    Objects used in forming queries, like:

    [Metadata('user_name'),
    Metadata('start_server_timestamp'),
    Tag('my_tag'),
    ...]
    

get_registry_model_count

get_registry_model_count(workspace)

Get a count of the number of registered models in this workspace.

Parameters:

  • workspace (str) –

    The name of workspace.

get_registry_model_details

get_registry_model_details(workspace, registry_name, version=None)

Get the details of a registered model in a workspace. If version is given then it will return the details of the workspace/registry-name/version. Otherwise, it will return the details of the workspace/registry-name.

Parameters:

  • workspace (str) –

    The name of workspace.

  • registry_name (str) –

    The name of the model.

  • version (str, default: None ) –

    The version string of the model.

Example

Running the following code:

1
2
3
4
5
6
7
8
9
import comet_ml

comet_ml.login()
api = comet_ml.API()

api_exp = api.get("workspace/project/765643463546345364536453436")
res = api_exp.get_registry_model_details("myworkspace", "model-name")

print(res)

will print out the following dictionary:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
{
    "registryModelId": "someRegistryModelId",
    "modelName": "someModelName",
    "description": "someDescription",
    "isPublic": "[Boolean]",
    "createdAt": "[long, when this model was created in the DB]",
    "lastUpdated": "[long, last time this model was updated in the DB]",
    "userName": "someUserName",
    "versions": [
        {
            "registryModelItemId": "someRegistryModelItemId",
            "experimentModel": {
            "experimentModelId": "someExperimentModelId",
            "experimentModelName": "someExperimentModelName",
            "experimentKey": "someExperimentKey"
            },
            "version": "someVersion",
            "comment": "someComment",
            "stages": ["production", "staging"],
            "userName": "someUserName",
            "createdAt": "[long, when this model item was created in the DB]",
            "lastUpdated": "[long, last time this model item was updated in the DB]",
            "assets": [
                {
                    "fileName": "someFileName",
                    "fileSize": "[Long, file size]",
                    "runContext": "someRunContext",
                    "step": "[Integer, step asset was logged during]",
                    "link": "link to download asset file",
                    "createdAt": "[Long, timestamp asset was created in DB]",
                    "dir": "someDirectory",
                    "canView": "[Boolean, whether the asset is viewable as an image]",
                    "audio": "[Boolean, whether the asset is an audio file]",
                    "histogram": "[Boolean, whether the asset is a histogram file]",
                    "image": "[Boolean, whether the asset was stored as an image]",
                    "type": "the type of asset",
                    "metadata": "Metadata associated with the asset",
                    "assetId": "someAssetId",
                }
            ],
        }
    ]
}

get_registry_model_names

get_registry_model_names(workspace)

Get a list of model names associated with this workspace.

Parameters:

  • workspace (str) –

    The name of workspace.

get_registry_model_notes

get_registry_model_notes(workspace, registry_name)

Get the notes of a registered model in a workspace.

Parameters:

  • workspace (str) –

    The name of workspace.

  • registry_name (str) –

    The name of the model.

get_registry_model_versions

get_registry_model_versions(workspace, registry_name)

Get a list of the version strings of a registered model in a workspace.

Parameters:

  • workspace (str) –

    The name of workspace.

  • registry_name (str) –

    The name of the model.

get_workspaces

get_workspaces() -> Optional[List[str]]

Return a list of names of the workspaces for this user.

model_registry_allowed_status_values

model_registry_allowed_status_values(workspace)

Get a list of the allowed values for the status of a model version in a given workspace.

Parameters:

  • workspace (str) –

    The name of workspace

move_experiments

move_experiments(
    experiment_keys, target_workspace, target_project_name, symlink=False
)

Move or symlink a list of experiments to another project_name.

Parameters:

  • experiment_keys (list) –

    List of experiment keys

  • target_workspace (str) –

    Workspace name to move experiments to

  • target_project_name (str) –

    The project name to move experiments to

  • symlink (bool, default: False ) –

    If True, then create a symlink in target_workspace/target_project_name.

Example
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
import comet_ml
from comet_ml.query import Tag

comet_ml.login()
api = comet_ml.API()

# Move all experiments with a particular tag:
experiments = api.query("workspace", "project", Tag("My tag"))
api.move_experiments([e.id for e in experiments],
                        "workspace",
                        "other-project")

query

query(workspace, project_name, query, archived=False)

Perform a query on a workspace/project to find matching APIExperiment. Queries are composed of

((QUERY-VARIABLE OPERATOR VALUE) & ...)

# or:

(QUERY-VARIABLE.METHOD(VALUE) & ...)

where:

QUERY-VARIABLE is Environment(NAME), Metric(NAME), Parameter(NAME), Other(NAME), Metadata(NAME), or Tag(VALUE).

OPERATOR is any of the standard mathematical operators ==, <=, >=, !=, <, >.

METHOD is between(), contains(), startswith(), or endswith().

You may also place the bitwise ~ not operator in front of an expression which means to invert the expression. Use & to combine additional criteria. Currently, | (bitwise or) is not supported.

VALUE can be any query type, includeing string, boolean, double, datetime, or timenumber (number of seconds). None and "" are special values that mean NULL and EMPTY, respectively. Use API.get_query_variables(WORKSPACE, PROJECT_NAME) to see query variables and types for a project.

When using datetime, be aware that the backend is using UTC datetimes. If you do not receive the correct experiments via a datetime query, please check with the web UI query builder to verify timezone of the server.

query() returns a list of matching APIExperiments().

Parameters:

  • workspace (str) –

    The name of the workspace

  • project_name (str) –

    The name of the project

  • query (Any) –

    A query expression (see below)

  • archived (bool, default: False ) –

    Query the archived experiments if True

Example
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import comet_ml
from comet_ml.query import (
    Environment,
    Metric,
    Parameter,
    Other,
    Metadata,
    Tag
)

comet_ml.login()
api = comet_ml.API()

# Find all experiments that have an acc metric value > .98:
api.query("workspace", "project", Metric("acc") > .98)

# Find all experiments that have a loss metric < .1 and
# a learning_rate parameter value >= 0.3:
loss = Metric("loss")
lr = Parameter("learning_rate")
query = ((loss < .1) & (lr >= 0.3))
api.query("workspace", "project", query)

# Find all of the experiments tagged "My simple tag":
tagged = Tag("My simple tag")
api.query("workspace", "project", tagged)

# Find all experiments started before Sept 24, 2019 at 5:00am:
q = Metadata("start_server_timestamp") < datetime(2019, 9, 24, 5)
api.query("workspace", "project", q)

# Find all experiments lasting more that 2 minutes (in seconds):
q = Metadata("duration") > (2 * 60)
api.query("workspace", "project", q)
Note
  • Use ~ for not on any expression
  • Use ~QUERY-VARIABLE.between(2,3) for values not between 2 and 3
  • Use (QUERY-VARIABLE == True) for truth
  • Use (QUERY-VARIABLE == False) for not true
  • Use (QUERY-VARIABLE == None) for testing null
  • Use (QUERY-VARIABLE != None) or ~(QUERY-VARIABLE == None) for testing not null
  • Use (QUERY-VARIABLE == "") for testing empty
  • Use (QUERY-VARIABLE != "") or ~(QUERY-VARIABLE == "") for testing not empty
  • Use Python's datetime(YEAR, MONTH, DAY, HOUR, MINUTE, SECONDS) for comparing datetimes, like Metadata("start_server_timestamp") or Metadata("end_server_timestamp")
  • Use seconds for comparing timenumbers, like Metadata("duration")
  • Use API.get_query_variables(WORKSPACE, PROJECT_NAME) to see query variables and types.

Do not use 'and', 'or', 'not', 'is', or 'in'. These are logical operators and you must use mathematical operators for queries. For example, always use '==' where you might usually use 'is'.

restore_experiment

restore_experiment(experiment_key)

Restore one experiment.

Parameters:

  • experiment_key (str) –

    the experiment ID to restore.

set_project_notes

set_project_notes(workspace, project_name, notes)

Set the notes of a project. Overwrites any previous notes.

Parameters:

  • workspace (str) –

    The name of the workspace

  • project_name (str) –

    The name of the project

  • notes (str) –

    The full notes

Example
1
2
3
4
5
6
7
import comet_ml

comet_ml.login()
api = comet_ml.API()

api.set_project_notes("my-workspace", "my-project",
                      "These are my project-level notes")

stop_experiment

stop_experiment(experiment_key)

Stop a running experiment.

Parameters:

  • experiment_key (str) –

    the experiment key

Example
import comet_ml

# Start an online experiment:
experiment = comet_ml.Experiment()

# Perhaps somewhere else, while experiment
# is running:
api = comet_ml.API()
api.stop_experiment(experiment.get_key())

update_cache

update_cache()

update_project

update_project(
    workspace,
    project_name,
    new_project_name=None,
    description=None,
    public=None,
)

Update the metadata of a project by project_name and workspace.

Parameters:

  • workspace (str) –

    name of workspace

  • project_name (str) –

    name of project

  • new_project_name (str, default: None ) –

    new name of project

  • description (str, default: None ) –

    new description of project

  • public (bool, default: None ) –

    new setting of visibility

Example
import comet_ml

comet_ml.login()
api = comet_ml.API()

api.update_project("mywork", "oldproj",
    new_project_name="newproj", description="desc",
    public=True)

update_project_by_id

update_project_by_id(
    project_id, new_project_name=None, description=None, public=None
)

Update the metadata of a project by project_id.

Parameters:

  • project_id (str) –

    project id

  • new_project_name (str, default: None ) –

    new name of project

  • description (str, default: None ) –

    new description of project)

  • public (bool, default: None ) –

    new setting of visibility

Example
1
2
3
4
5
6
7
8
import comet_ml

comet_ml.login()
api = comet_ml.API()

api.update_project_by_id("2627523253623",
    new_project_name="newproj", description="desc",
    public=True)

update_registry_model

update_registry_model(
    workspace, registry_name, new_name=None, description=None, public=None
)

Updates a registered model's name, description, and/or visibility.

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

  • new_name (str, default: None ) –

    The new name of model.

  • description (str, default: None ) –

    The new description of model.

  • public (bool, default: None ) –

    The new visibility of model.

update_registry_model_notes

update_registry_model_notes(workspace, registry_name, notes)

Updates a registered model's notes.

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

  • notes (str) –

    Notes of model.

update_registry_model_version

update_registry_model_version(
    workspace, registry_name, version, comment=None, stages=None
)

Update a registered model version's comments and stages.

This method has been deprecated as stage has been replaced by status and a new comet_ml.Model object was introduced. We recommend using the comet_ml.API.get_model method to get the Model object and then using comet_ml.Model.set_status or comet_ml.Model.add_tag

Parameters:

  • workspace (str) –

    The name of the workspace.

  • registry_name (str) –

    The name of the model.

  • version (str) –

    The version of model to update.

  • comment (str, default: None ) –

    Comments of model version.

  • stages (List[str], default: None ) –

    A new list of stages, e.g. ["production", "staging"].

use_cache

use_cache(cache=None)

Turn cache on/off or return cache.

Parameters:

  • cache (bool, default: None ) –

    Whether or not to use the cache

Example
1
2
3
4
5
6
7
8
9
import comet_ml

comet_ml.login()
api = comet_ml.API()
api.use_cache(False)
print(api.use_cache()) # Prints False

api.use_cache(True)
print(api.use_cache()) # Prints True
Jan. 17, 2025