OpikBaseModel¶
- class opik.evaluation.models.OpikBaseModel(model_name: str)¶
Bases:
ABC
This class serves as an interface to LLMs.
If you want to implement custom LLM provider in evaluation metrics, you should inherit from this class.
- __init__(model_name: str)¶
Initializes the base model with a given model name.
- Parameters:
model_name – The name of the LLM to be used.
- abstract generate_string(input: str, **kwargs: Any) str ¶
Simplified interface to generate a string output from the model.
- Parameters:
input – The input string based on which the model will generate the output.
kwargs – Additional arguments that may be used by the model for string generation.
- Returns:
The generated string output.
- Return type:
str
- abstract async agenerate_string(input: str, **kwargs: Any) str ¶
Simplified interface to generate a string output from the model. Async version.
- Parameters:
input – The input string based on which the model will generate the output.
kwargs – Additional arguments that may be used by the model for string generation.
- Returns:
The generated string output.
- Return type:
str
- abstract generate_provider_response(**kwargs: Any) Any ¶
Generate a provider-specific response. Can be used to interface with the underlying model provider (e.g., OpenAI, Anthropic) and get raw output.
- Parameters:
kwargs – arguments required by the provider to generate a response.
- Returns:
The response from the model provider, which can be of any type depending on the use case and LLM model.
- Return type:
Any
- abstract async agenerate_provider_response(**kwargs: Any) Any ¶
Generate a provider-specific response. Can be used to interface with the underlying model provider (e.g., OpenAI, Anthropic) and get raw output. Async version.
- Parameters:
kwargs – arguments required by the provider to generate a response.
- Returns:
The response from the model provider, which can be of any type depending on the use case and LLM model.
- Return type:
Any