Experiment¶
Experiment is a unit of measurable research that defines a single run with some data/parameters/code/results.
Creating an Experiment object in your code will report a new experiment to your Comet.ml project. Your Experiment will automatically track and collect many things and will also allow you to manually report anything.
You can create multiple objects in one script (such as when looping over multiple hyper parameters).
Experiment.url¶
Get the url of the experiment.
Example:
```python
api_experiment.url "https://www.comet.ml/username/34637643746374637463476" ```
Experiment.__init__
¶
python
__init__(self, api_key=None, project_name=None, workspace=None, log_code=True,
log_graph=True, auto_param_logging=True, auto_metric_logging=True,
parse_args=True, auto_output_logging="default", log_env_details=True,
log_git_metadata=True, log_git_patch=True, disabled=False,
log_env_gpu=True, log_env_host=True, display_summary=None,
log_env_cpu=True, display_summary_level=None, optimizer_data=None,
auto_weight_logging=None, auto_log_co2=True, auto_metric_step_rate=10,
auto_histogram_tensorboard_logging=False,
auto_histogram_epoch_rate=1, auto_histogram_weight_logging=False,
auto_histogram_gradient_logging=False,
auto_histogram_activation_logging=False, experiment_key=None)
Creates a new experiment on the Comet.ml frontend. Args:
- api_key: Your API key obtained from comet.ml
- project_name: Optional. Send your experiment to a specific project. Otherwise will be sent to
Uncategorized Experiments
. If project name does not already exists Comet.ml will create a new project. - workspace: Optional. Attach an experiment to a project that belongs to this workspace
- log_code: Default(True) - allows you to enable/disable code logging
- log_graph: Default(True) - allows you to enable/disable automatic computation graph logging.
- auto_param_logging: Default(True) - allows you to enable/disable hyper parameters logging
- auto_metric_logging: Default(True) - allows you to enable/disable metrics logging
- auto_metric_step_rate: Default(10) - controls how often batch metrics are logged
- auto_histogram_tensorboard_logging: Default(False) - allows you to enable/disable automatic tensorboard histogram logging
- auto_histogram_epoch_rate: Default(1) - controls how often histograms are logged
- auto_histogram_weight_logging: Default(False) - allows you to enable/disable histogram logging for biases and weights
- auto_histogram_gradient_logging: Default(False) - allows you to enable/disable automatic histogram logging of gradients
- auto_histogram_activation_logging: Default(False) - allows you to enable/disable automatic histogram logging of activations
- auto_output_logging: Default("default") - allows you to select
which output logging mode to use. You can pass
"native"
which will log all output even when it originated from a C native library. You can also pass"simple"
which will work only for output made by Python code. If you want to disable automatic output logging, you can passFalse
. The default is"default"
which will detect your environment and deactivate the output logging for IPython and Jupyter environment and sets"native"
in the other cases. - auto_log_co2: Default(True) - automatically tracks the CO2 emission of
this experiment if
codecarbon
package is installed in the environment - parse_args: Default(True) - allows you to enable/disable automatic parsing of CLI arguments
- log_env_details: Default(True) - log various environment information in order to identify where the script is running
- log_env_gpu: Default(True) - allow you to enable/disable the
automatic collection of gpu details and metrics (utilization, memory usage etc..).
log_env_details
must also be true. - log_env_cpu: Default(True) - allow you to enable/disable the
automatic collection of cpu details and metrics (utilization, memory usage etc..).
log_env_details
must also be true. - log_env_host: Default(True) - allow you to enable/disable the
automatic collection of host information (ip, hostname, python version, user etc...).
log_env_details
must also be true. - log_git_metadata: Default(True) - allow you to enable/disable the automatic collection of git details
- log_git_patch: Default(True) - allow you to enable/disable the automatic collection of git patch
- display_summary_level: Default(1) - control the summary detail that is displayed on the console at end of experiment. If 0, the summary notification is still sent. Valid values are 0 to 2.
- disabled: Default(False) - allows you to disable all network communication with the Comet.ml backend. It is useful when you want to test to make sure everything is working, without actually logging anything.
- experiment_key: Optional. If provided, will be used as the experiment key. If an experiment with the same key already exists, it will raises an Exception. Could be set through configuration as well.
Experiment.add_tag¶
python
add_tag(self, tag)
Add a tag to the experiment. Tags will be shown in the dashboard. Args:
- tag: String. A tag to add to the experiment.
Experiment.add_tags¶
python
add_tags(self, tags)
Add several tags to the experiment. Tags will be shown in the dashboard. Args:
- tag: List
. Tags list to add to the experiment.
Experiment.clean¶
python
clean(self)
Clean the experiment loggers, useful in case you want to debug your scripts with IPDB.
Experiment.context_manager¶
python
context_manager(*args, **kwds)
A context manager to mark the beginning and the end of the training phase. This allows you to provide a namespace for metrics/params. For example:
python
experiment = Experiment(api_key="MY_API_KEY")
with experiment.context_manager("validation"):
model.fit(x_train, y_train)
accuracy = compute_accuracy(model.predict(x_validate), y_validate)
# returns the validation accuracy
experiment.log_metric("accuracy", accuracy)
# this will be logged as validation_accuracy based on the context.
Experiment.create_confusion_matrix¶
python
create_confusion_matrix(self, y_true=None, y_predicted=None, labels=None,
matrix=None, title="Confusion Matrix", row_label="Actual Category",
column_label="Predicted Category", max_examples_per_cell=25,
max_categories=25, winner_function=None,
index_to_example_function=None, cache=True, selected=None, images=None,
**kwargs)
Create a confusion matrix for use over multiple epochs.
Args:
- y_true: (optional) list of vectors representing the targets, or a list of integers representing the correct label. If not provided, then matrix may be provided.
- y_predicted: (optional) list of vectors representing predicted values, or a list of integers representing the output. If not provided, then matrix may be provided.
- images: (optional) a list of data that can be passed to Experiment.log_image()
- labels: (optional) a list of strings that name of the columns and rows, in order. By default, it will be "0" through the number of categories (e.g., rows/columns).
- matrix: (optional) the confusion matrix (list of lists). Must be square, if given. If not given, then it is possible to provide y_true and y_predicted.
- title: (optional) a custom name to be displayed. By default, it is "Confusion Matrix".
- row_label: (optional) label for rows. By default, it is "Actual Category".
- column_label: (optional) label for columns. By default, it is "Predicted Category".
- max_example_per_cell: (optional) maximum number of examples per cell. By default, it is 25.
- max_categories: (optional) max number of columns and rows to use. By default, it is 25.
- winner_function: (optional) a function that takes in an entire list of rows of patterns, and returns the winning category for each row. By default, it is argmax.
- index_to_example_function: (optional) a function that takes an index and returns either a number, a string, a URL, or a {"sample": str, "assetId": str} dictionary. See below for more info. By default, the function returns a number representing the index of the example.
- cache: (optional) should the results of index_to_example_function be cached and reused? By default, cache is True.
-
selected: (optional) None, or list of selected category indices. These are the rows/columns that will be shown. By default, select is None. If the number of categories is greater than max_categories, and selected is not provided, then selected will be computed automatically by selecting the most confused categories. kwargs: (optional) any extra keywords and their values will
be passed onto the index_to_example_function. file_name: (optional) logging option, by default is "confusion-matrix.json", overwrite: (optional) logging option, by default is False step: (optional) logging option, by default is None epoch: (optional) logging option, by default is None
See the executable Jupyter Notebook tutorial at Comet Confusion Matrix.
Note:
Uses winner_function to compute winning categories for y_true and y_predicted, if they are vectors.
Examples:
```python
experiment = Experiment()
If you have a y_true and y_predicted:¶
y_predicted = model.predict(x_test) experiment.log_confusion_matrix(y_true, y_predicted)
Or, if you have already computed the matrix:¶
experiment.log_confusion_matrix(labels=["one", "two", "three"], matrix=[[10, 0, 0], [ 0, 9, 1], [ 1, 1, 8]])
Or, if you have the categories for y_true or y_predicted¶
you can just pass those in:¶
experiment.log_confusion_matrix([0, 1, 2, 3], [2, 2, 2, 2]) # guesses 2 for all
However, if you want to reuse examples from previous runs,¶
you can reuse a Confusion Matrix instance.¶
cm = experiment.create_confusion_matrix() y_predicted = model.predict(x_test) cm.compute_matrix(y_true, y_predicted) experiment.log_confusion_matrix(matrix=cm)
Log again, using previously cached values:¶
y_predicted = model.predict(x_test) cm.compute_matrix(y_true, y_predicted) experiment.log_confusion_matrix(matrix=cm) ```
For more details and example uses, please see: https://www.comet.ml/docs/python-sdk/Comet-Confusion-Matrix/
Also, for more low-level information, see comet_ml.utils.ConfusionMatrix
Experiment.create_embedding_image¶
python
create_embedding_image(self, image_data, image_size,
image_preprocess_function=None, image_transparent_color=None,
image_background_color_function=None)
Create an embedding image (a sprite sheet). Returns the image and the url to the image.
Args:
- image_data: list of arrays or Images
- image_size: the size of each image
- image_preprocess_function: (optional) if image_data is an array, apply this function to each element first
- image_transparent_color: a (red, green, blue) tuple
- image_background_color_function: a function that takes an index, and returns a (red, green, blue) color tuple
Returns: image and url
```python
def label_to_color(index): ... label = labels[index] ... if label == 0: ... return (255, 0, 0) ... elif label == 1: ... return (0, 255, 0) ... elif label == 2: ... return (0, 0, 255) ... elif label == 3: ... return (255, 255, 0) ... elif label == 4: ... return (0, 255, 255) ... elif label == 5: ... return (128, 128, 0) ... elif label == 6: ... return (0, 128, 128) ... elif label == 7: ... return (128, 0, 128) ... elif label == 8: ... return (255, 0, 255) ... elif label == 9: ... return (255, 255, 255) ... image, image_url = experiment.create_embedding_image(inputs, ... image_preprocess_function=lambda matrix: np.round(matrix/255,0) * 2, ... image_transparent_color=(0, 0, 0), ... image_size=(28, 28), ... image_background_color_function=label_to_color) ... ```
Experiment.create_symlink¶
python
create_symlink(self, project_name)
creates a symlink for this experiment in another project. The experiment will now be displayed in the project provided and the original project.
Args:
- project_name: String. represents the project name. Project must exists.
Experiment.disable_mp¶
python
disable_mp(self)
Disabling the auto-collection of metrics and monkey-patching of the Machine Learning frameworks.
Experiment.display¶
python
display(self, clear=False, wait=True, new=0, autoraise=True, tab=None)
Show the Comet.ml experiment page in an IFrame in a Jupyter notebook or Jupyter lab, OR open a browser window or tab.
Common Args: - tab: name of the Tab on Experiment View
Note: the Tab name should be one of:
- "artifacts"
- "assets"
- "audio"
- "charts"
- "code"
- "confusion-matrices"
- "histograms"
- "images"
- "installed-packages"
- "metrics"
- "notes"
- "parameters"
- "system-metrics"
- "text"
For Jupyter environments:
Args:
- clear: to clear the output area, use clear=True
- wait: to wait for the next displayed item, use wait=True (cuts down on flashing)
For non-Jupyter environments:
Args:
- new: open a new browser window if new=1, otherwise re-use existing window/tab
- autoraise: make the browser tab/window active
Experiment.display_project¶
python
display_project(self, view_id=None, clear=False, wait=True, new=0,
autoraise=True)
Show the Comet.ml project page in an IFrame in a Jupyter notebook or Jupyter lab, OR open a browser window or tab.
Common Args: - view_id: (optional, string) the id of the view to show
For Jupyter environments:
Args:
- clear: to clear the output area, use clear=True
- wait: to wait for the next displayed item, use wait=True (cuts down on flashing)
For non-Jupyter environments:
Args:
- new: open a new browser window if new=1, otherwise re-use existing window/tab
- autoraise: make the browser tab/window active
Experiment.end¶
python
end(self)
Use to indicate that the experiment is complete.
Experiment.get_artifact¶
python
get_artifact(self, artifact_name, workspace=None, version_or_alias=None)
Returns a logged artifact object that can be used to access the artifact version assets and download them locally.
If no version or alias is provided, the latest version for that artifact is returned.
Args:
- artifact_name: Retrieve an artifact with that name. This could either be a fully
qualified artifact name like
workspace/artifact-name:versionOrAlias
or just the name of the artifact likeartifact-name
. - workspace: Retrieve an artifact belonging to that workspace
- version_or_alias: Optional. Retrieve the artifact by the given alias or version.
Returns: the LoggedArtifact
For example:
python
logged_artifact = experiment.get_artifact("workspace/artifact-name:version_or_alias")
Which is equivalent to:
python
logged_artifact = experiment.get_artifact(
artifact_name="artifact-name",
workspace="workspace",
version_or_alias="version_or_alias")
Experiment.get_callback¶
python
get_callback(self, framework, *args, **kwargs)
Get a callback for a particular framework.
When framework == 'keras' then return an instance of Comet.ml's Keras callback.
When framework == 'tf-keras' then return an instance of Comet.ml's TensorflowKeras callback.
When framework == "tf-estimator-train" then return an instance of Comet.ml's Tensorflow Estimator Train callback.
Note:
The keras callbacks are added to your Keras model.fit()
callbacks list automatically to report model training metrics
to Comet.ml so you do not need to add them manually.
Note:
The lightgbm callback is added to the lightgbm.train()
callbacks list automatically to report model training metrics
to Comet.ml so you do not need to add it manually.
Experiment.get_keras_callback¶
python
get_keras_callback(self)
This method is deprecated. See Experiment.get_callback("keras")
Experiment.get_key¶
python
get_key(self)
Returns the experiment key, useful for using with the ExistingExperiment class Returns: Experiment Key (String)
Experiment.get_metric¶
python
get_metric(self, name)
Get a metric from those logged.
Args:
- name: str, the name of the metric to get
Experiment.get_name¶
python
get_name(self)
Get the name of the experiment, if one.
Example:
```python
experiment.set_name("My Name") experiment.get_name() 'My Name' ```
Experiment.get_other¶
python
get_other(self, name)
Get an other from those logged.
Args:
- name: str, the name of the other to get
Experiment.get_parameter¶
python
get_parameter(self, name)
Get a parameter that was logged previously in this Experiment instance. Doesn't retrieve parameter that were logged before when using the ExistingExperiment class.
If this method is called inside a context, like test
,
train
, validate
or
context_manager
, the current context name will be
automatically added at the front of parameter name.
For example:
```python experiment = Experiment(api_key="MY_API_KEY")
experiment.log_parameter("training_rate", 0.0001) with experiment.train(): experiment.log_parameter("batch_size", 64)
assert experiment.get_parameter("training_rate") == 0.0001 assert experiment.get_parameter("train_batch_size") == 64
with experiment.train(): assert experiment.get_parameter("batch_size") == 64 ```
Args:
-
name: str, the name of the parameter to get Raises:
-
KeyError: if parameter with given name not found
Experiment.get_tags¶
python
get_tags(self)
Return the tags of this experiment.
Returns: set
Experiment.log_artifact¶
python
log_artifact(self, artifact)
Log an Artifact object, synchronously create a new Artifact Version and upload asynchronously all local and remote assets attached to the Artifact object.
Args:
- artifact: an Artifact object
Returns: a LoggedArtifact
Experiment.log_asset¶
python
log_asset(self, file_data, file_name=None, overwrite=False, copy_to_tmp=True,
step=None, metadata=None)
Logs the Asset determined by file_data.
Args:
- file_data: String or File-like - either the file path of the file you want to log, or a file-like asset.
- file_name: String - Optional. A custom file name to be displayed. If not
provided the filename from the
file_data
argument will be used. - overwrite: if True will overwrite all existing assets with the same name.
- copy_to_tmp: If
file_data
is a file-like object, then this flag determines if the file is first copied to a temporary file before upload. Ifcopy_to_tmp
is False, then it is sent directly to the cloud. - step: Optional. Used to associate the asset to a specific step.
- metadata: Optional. Some additional data to attach to the the audio asset. Must be a JSON-encodable dict.
Examples:
```python
experiment.log_asset("model1.h5")
fp = open("model2.h5", "rb") experiment.log_asset(fp, ... file_name="model2.h5") fp.close()
fp = open("model3.h5", "rb") experiment.log_asset(fp, ... file_name="model3.h5", ... copy_to_tmp=False) fp.close() ```
Experiment.log_asset_data¶
python
log_asset_data(self, data, name=None, overwrite=False, step=None, metadata=None,
file_name=None, epoch=None)
Logs the data given (str, binary, or JSON).
Args:
- data: data to be saved as asset
- name: String, optional. A custom file name to be displayed If not provided the filename from the temporary saved file will be used.
- overwrite: Boolean, optional. Default False. If True will overwrite all existing assets with the same name.
- step: Optional. Used to associate the asset to a specific step.
- epoch: Optional. Used to associate the asset to a specific epoch.
- metadata: Optional. Some additional data to attach to the the asset data. Must be a JSON-encodable dict.
See also: APIExperiment.get_experiment_asset(return_type="json")
Experiment.log_asset_folder¶
python
log_asset_folder(self, folder, step=None, log_file_name=None, recursive=False)
Logs all the files located in the given folder as assets.
Args:
- folder: String - the path to the folder you want to log.
- step: Optional. Used to associate the asset to a specific step.
- log_file_name: Optional. if True, log the file path with each file.
- recursive: Optional. if True, recurse folder and save file names.
If log_file_name is set to True, each file in the given folder will be
logged with the following name schema:
FOLDER_NAME/RELPATH_INSIDE_FOLDER
. Where FOLDER_NAME
is the basename
of the given folder and RELPATH_INSIDE_FOLDER
is the file path
relative to the folder itself.
Experiment.log_audio¶
python
log_audio(self, audio_data, sample_rate=None, file_name=None, metadata=None,
overwrite=False, copy_to_tmp=True, step=None)
Logs the audio Asset determined by audio data.
Args:
- audio_data: String or a numpy array - either the file path of the file you want
to log, or a numpy array given to
scipy.io.wavfile.write
for wav conversion. - sample_rate: Integer - Optional. The sampling rate given to
scipy.io.wavfile.write
for creating the wav file. - file_name: String - Optional. A custom file name to be displayed.
If not provided, the filename from the
audio_data
argument will be used. - metadata: Some additional data to attach to the the audio asset. Must be a JSON-encodable dict.
- overwrite: if True will overwrite all existing assets with the same name.
- copy_to_tmp: If
audio_data
is a numpy array, then this flag determines if the WAV file is first copied to a temporary file before upload. Ifcopy_to_tmp
is False, then it is sent directly to the cloud. - step: Optional. Used to associate the audio asset to a specific step.
Experiment.log_code¶
python
log_code(self, file_name=None, folder=None, code=None, code_name=None)
Log additional source code files.
Args:
- file_name: optional, string: the file path of the file to log
- folder: optional, string: the folder path where the code files are stored
- code: optional, string: source code, either as a string or a file-like object (like StringIO). If passed, code_name is mandatory
- code_name: optional, string: name of the source code file when code parameter is passed
Experiment.log_confusion_matrix¶
python
log_confusion_matrix(self, y_true=None, y_predicted=None, matrix=None,
labels=None, title="Confusion Matrix", row_label="Actual Category",
column_label="Predicted Category", max_examples_per_cell=25,
max_categories=25, winner_function=None,
index_to_example_function=None, cache=True,
file_name="confusion-matrix.json", overwrite=False, step=None,
epoch=None, images=None, selected=None, **kwargs)
Logs a confusion matrix.
Args:
- y_true: (optional) list of vectors representing the targets, or a list of integers representing the correct label. If not provided, then matrix may be provided.
- y_predicted: (optional) list of vectors representing predicted values, or a list of integers representing the output. If not provided, then matrix may be provided.
- images: (optional) a list of data that can be passed to Experiment.log_image().
- labels: (optional) a list of strings that name of the columns and rows, in order. By default, it will be "0" through the number of categories (e.g., rows/columns).
- matrix: (optional) the confusion matrix (list of lists). Must be square, if given. If not given, then it is possible to provide y_true and y_predicted.
- title: (optional) a custom name to be displayed. By default, it is "Confusion Matrix".
- row_label: (optional) label for rows. By default, it is "Actual Category".
- column_label: (optional) label for columns. By default, it is "Predicted Category".
- max_example_per_cell: (optional) maximum number of examples per cell. By default, it is 25.
- max_categories: (optional) max number of columns and rows to use. By default, it is 25.
- winner_function: (optional) a function that takes in an entire list of rows of patterns, and returns the winning category for each row. By default, it is argmax.
- index_to_example_function: (optional) a function that takes an index and returns either a number, a string, a URL, or a {"sample": str, "assetId": str} dictionary. See below for more info. By default, the function returns a number representing the index of the example.
- cache: (optional) should the results of index_to_example_function be cached and reused? By default, cache is True.
-
selected: (optional) None, or list of selected category indices. These are the rows/columns that will be shown. By default, select is None. If the number of categories is greater than max_categories, and selected is not provided, then selected will be computed automatically by selecting the most confused categories. kwargs: (optional) any extra keywords and their values will
be passed onto the index_to_example_function. file_name: (optional) logging option, by default is "confusion-matrix.json", overwrite: (optional) logging option, by default is False step: (optional) logging option, by default is None epoch: (optional) logging option, by default is None
See the executable Jupyter Notebook tutorial at Comet Confusion Matrix.
Note:
Uses winner_function to compute winning categories for y_true and y_predicted, if they are vectors.
Examples:
```python
experiment = Experiment()
If you have a y_true and y_predicted:¶
y_predicted = model.predict(x_test) experiment.log_confusion_matrix(y_true, y_predicted)
Or, if you have already computed the matrix:¶
experiment.log_confusion_matrix(labels=["one", "two", "three"], matrix=[[10, 0, 0], [ 0, 9, 1], [ 1, 1, 8]])
Or, if you have the categories for y_true or y_predicted¶
you can just pass those in:¶
experiment.log_confusion_matrix([0, 1, 2, 3], [2, 2, 2, 2]) # guesses 2 for all
However, if you want to reuse examples from previous runs,¶
you can reuse a ConfusionMatrix instance.¶
from comet_ml import ConfusionMatrix
cm = ConfusionMatrix() y_predicted = model.predict(x_test) cm.compute_matrix(y_true, y_predicted) experiment.log_confusion_matrix(matrix=cm)
Log again, using previously cached values:¶
y_predicted = model.predict(x_test) cm.compute_matrix(y_true, y_predicted) experiment.log_confusion_matrix(matrix=cm) ```
For more details and example uses, please see: https://www.comet.ml/docs/python-sdk/Comet-Confusion-Matrix/
Also, for more low-level information, see comet_ml.utils.ConfusionMatrix
Experiment.log_curve¶
python
log_curve(self, name, x, y, overwrite=False, step=None)
Log timeseries data.
Args:
- name: (str) name of data
- x: list of x-axis values
- y: list of y-axis values
- overwrite: (optional, bool) if True, overwrite previous log
- step: (optional, int) the step value
Examples:
```python
experiment.log_curve("my curve", x=[1, 2, 3, 4, 5], y=[10, 20, 30, 40, 50]) experiment.log_curve("my curve", [1, 2, 3, 4, 5], [10, 20, 30, 40, 50]) ```
Experiment.log_dataframe_profile¶
python
log_dataframe_profile(self, dataframe, name="dataframe", minimal=False,
log_raw_dataframe=True, dataframe_format="json", **format_kwargs)
Log a pandas DataFrame profile as an asset. Optionally, can also log the dataframe.
Args:
- dataframe: the dataframe to profile and/or log
- name (optional, default "dataframe"): the basename (without extension) of the dataframe assets
- minimal (optional, default False): if True, create a minimal profile. Useful for large datasets.
- log_raw_dataframe: (optional, default True), log the
dataframe as an asset (same as calling
log_table()
) - dataframe_format: (optional, default "json"), the format for optionally logging the dataframe.
- format_kwargs: (optional), keyword args for dataframe logging as an asset.
Example:
```python
from comet_ml import Experiment import pandas as pd experiment = Experiment() df = pd.read_csv("https://data.nasa.gov/api/views/gh4g-9sfh/rows.csv?accessType=DOWNLOAD", ... parse_dates=['year'], encoding='UTF-8') experiment.log_dataframe_profile(df) ```
See also: Experiment.log_table(pandas_dataframe)
Experiment.log_dataset_hash¶
python
log_dataset_hash(self, data)
Used to log the hash of the provided object. This is a best-effort hash computation which is based on the md5
hash of the underlying string representation of the object data. Developers are encouraged to implement their
own hash computation that's tailored to their underlying data source. That could be reported as
experiment.log_parameter("dataset_hash", your_hash)
.
data: Any object that when casted to string (e.g str(data)) returns a value that represents the underlying data.
Experiment.log_dataset_info¶
python
log_dataset_info(self, name=None, version=None, path=None)
Used to log information about your dataset.
Args:
- name: Optional string representing the name of the dataset.
- version: Optional string representing a version identifier.
- path: Optional string that represents the path to the dataset. Potential values could be a file system path, S3 path or Database query.
At least one argument should be included. The logged values will
show on the Other
tab.
Experiment.log_dependency¶
python
log_dependency(self, name, version)
Reports name,version to the Installed Packages
tab on Comet.ml. Useful to track dependencies.
Args:
- name: Any type of key (str,int,float..)
- version: Any type of value (str,int,float..)
Returns: None
Experiment.log_embedding¶
python
log_embedding(self, vectors, labels, image_data=None, image_size=None,
image_preprocess_function=None, image_transparent_color=None,
image_background_color_function=None, title="Comet Embedding",
template_filename=None, group=None)
Log a multi-dimensional dataset and metadata for viewing with Comet's Embedding Projector (experimental).
Args:
- vectors: the tensors to visualize in 3D
- labels: labels for each tensor
- image_data: (optional) list of arrays or Images
- image_size: (optional, required if image_data is given) the size of each image
- image_preprocess_function: (optional) if image_data is an array, apply this function to each element first
- image_transparent_color: a (red, green, blue) tuple
- image_background_color_function: a function that takes an index, and returns a (red, green, blue) color tuple
- title: (optional) name of tensor
- template_filename: (optional) name of template JSON file
- group: (optional) name of group of embeddings
See also: Experiment._log_embedding_list()
and comet_ml.Embedding
Example:
```python from comet_ml import Experiment
import numpy as np from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
def label_to_color(index): label = y_test[index] if label == 0: return (255, 0, 0) elif label == 1: return (0, 255, 0) elif label == 2: return (0, 0, 255) elif label == 3: return (255, 255, 0) elif label == 4: return (0, 255, 255) elif label == 5: return (128, 128, 0) elif label == 6: return (0, 128, 128) elif label == 7: return (128, 0, 128) elif label == 8: return (255, 0, 255) elif label == 9: return (255, 255, 255)
experiment = Experiment(project_name="projector-embedding")
experiment.log_embedding( vectors=x_test, labels=y_test, image_data=x_test, image_preprocess_function=lambda matrix: np.round(matrix/255,0) * 2, image_transparent_color=(0, 0, 0), image_size=(28, 28), image_background_color_function=label_to_color, ) ```
Experiment.log_epoch_end¶
python
log_epoch_end(self, epoch_cnt, step=None)
Logs that the epoch finished. Required for progress bars.
Args:
- epoch_cnt: integer
Returns: None
Experiment.log_figure¶
python
log_figure(self, figure_name=None, figure=None, overwrite=False, step=None)
Logs the global Pyplot figure or the passed one and upload its svg version to the backend.
Args:
- figure_name: Optional. String - name of the figure
- figure: Optional. The figure you want to log. If not set, the global pyplot figure will be logged and uploaded
- overwrite: Optional. Boolean - if another figure with the same name exists, it will be overwritten if overwrite is set to True.
- step: Optional. Used to associate the audio asset to a specific step.
Experiment.log_histogram_3d¶
python
log_histogram_3d(self, values, name=None, step=None, epoch=None, metadata=None,
**kwargs)
Logs a histogram of values for a 3D chart as an asset for this experiment. Calling this method multiple times with the same name and incremented steps will add additional histograms to the 3D chart on Comet.ml.
Args:
- values: a list, tuple, array (any shape) to summarize, or a Histogram object
- name: str (optional), name of summary
- step: Optional. Used as the Z axis when plotting on Comet.ml.
- epoch: Optional. Used as the Z axis when plotting on Comet.ml.
- metadata: Optional: Used for items like prefix for histogram name. kwargs: Optional. Additional keyword arguments for histogram.
Note:
This method requires that step is either given here, or has been set elsewhere. For example, if you are using an auto- logger that sets step then you don't need to set it here.
Experiment.log_html¶
python
log_html(self, html, clear=False)
Reports any HTML blob to the HTML
tab on Comet.ml. Useful for creating your own rich reports.
The HTML will be rendered as an Iframe. Inline CSS/JS supported.
Args:
- html: Any html string. for example:
- clear: Default to False. when setting clear=True it will remove all previous html.
python experiment.log_html('<a href="www.comet.ml"> I love Comet.ml </a>')
Returns: None
Experiment.log_html_url¶
python
log_html_url(self, url, text=None, label=None)
Easy to use method to add a link to a URL in the HTML
tab
on Comet.ml.
Args:
- url: a link to a file or notebook, for example
- text: text to use a clickable word or phrase (optional; uses url if not given)
- label: text that precedes the link
Examples:
```python
experiment.log_html_url("https://my-company.com/file.txt") ```
Adds html similar to:
html
<a href="https://my-company.com/file.txt">
- **https**: //my-company.com/file.txt
</a>
```python
experiment.log_html_url("https://my-company.com/file.txt", "File") ```
Adds html similar to:
html
<a href="https://my-company.com/file.txt">File</a>
```python
experiment.log_html_url("https://my-company.com/file.txt", "File", "Label") ```
Adds html similar to:
Label: <a href="https://my-company.com/file.txt">File</a>
Experiment.log_image¶
python
log_image(self, image_data, name=None, overwrite=False, image_format="png",
image_scale=1.0, image_shape=None, image_colormap=None,
image_minmax=None, image_channels="last", copy_to_tmp=True, step=None)
Logs the image. Images are displayed on the Graphics tab on Comet.ml.
Args:
- image_data: Required. image_data is one of the following:
- a path (string) to an image
- a file-like object containing an image
- a numpy matrix
- a TensorFlow tensor
- a PyTorch tensor
- a list or tuple of values
- a PIL Image
- name: String - Optional. A custom name to be displayed on the dashboard.
If not provided the filename from the
image_data
argument will be used if it is a path. - overwrite: Optional. Boolean - If another image with the same name exists, it will be overwritten if overwrite is set to True.
- image_format: Optional. String. Default: 'png'. If the image_data is actually something that can be turned into an image, this is the format used. Typical values include 'png' and 'jpg'.
- image_scale: Optional. Float. Default: 1.0. If the image_data is actually something that can be turned into an image, this will be the new scale of the image.
- image_shape: Optional. Tuple. Default: None. If the image_data is actually
something that can be turned into an image, this is the new shape
of the array. Dimensions are (width, height) or (width, height, colors)
where
colors
is 3 (RGB) or 1 (grayscale). - image_colormap: Optional. String. If the image_data is actually something that can be turned into an image, this is the colormap used to colorize the matrix.
- image_minmax: Optional. (Number, Number). If the image_data is actually something that can be turned into an image, this is the (min, max) used to scale the values. Otherwise, the image is autoscaled between (array.min, array.max).
- image_channels: Optional. Default 'last'. If the image_data is actually something that can be turned into an image, this is the setting that indicates where the color information is in the format of the 2D data. 'last' indicates that the data is in (rows, columns, channels) where 'first' indicates (channels, rows, columns).
- copy_to_tmp: If
image_data
is not a file path, then this flag determines if the image is first copied to a temporary file before upload. Ifcopy_to_tmp
is False, then it is sent directly to the cloud. - step: Optional. Used to associate the image asset to a specific step.
Experiment.log_metric¶
python
log_metric(self, name, value, step=None, epoch=None, include_context=True)
Logs a general metric (i.e accuracy, f1).
e.g.
python
y_pred_train = model.predict(X_train)
acc = compute_accuracy(y_pred_train, y_train)
experiment.log_metric("accuracy", acc)
See also log_metrics
Args:
- name: String - name of your metric
- value: Float/Integer
- step: Optional. Used as the X axis when plotting on comet.ml
- epoch: Optional. Used as the X axis when plotting on comet.ml
- include_context: Optional. If set to True (the default), the current context will be logged along the metric.
Returns: None
Down sampling metrics: Comet guarantees to store 15,000 data points for each metric. If more than 15,000 data points are reported we perform a form of reservoir sub sampling - https://en.wikipedia.org/wiki/Reservoir_sampling.
Experiment.log_metrics¶
python
log_metrics(self, dic, prefix=None, step=None, epoch=None)
Logs a key,value dictionary of metrics.
See also log_metric
Experiment.log_model¶
python
log_model(self, name, file_or_folder, file_name=None, overwrite=False,
metadata=None, copy_to_tmp=True, prepend_folder_name=True)
Logs the model data under the name. Data can be a file path, a folder path or a file-like object.
Args:
- name: string (required), the name of the model
- file_or_folder: the model data (required); can be a file path, a folder path or a file-like object.
- file_name: (optional) the name of the model data. Used with file-like objects or files only.
- overwrite: boolean, if True, then overwrite previous versions Does not apply to folders.
- metadata: Some additional data to attach to the the data. Must be a JSON-encodable dict.
- copy_to_tmp: for file name or file-like; if True copy to temporary location before uploading; if False, then upload from current location
- prepend_folder_name: boolean, default True. If True and logging a folder, prepend file path by the folder name.
Returns: dictionary of model URLs
Experiment.log_notebook¶
python
log_notebook(self, filename, overwrite=False)
Log a Jupyter Notebook file as an asset.
Args:
- filename: (str) the path and name of notebook
- overwrite: (optional, bool) if True, overwrite previous notebook
Example:
```python
experiment = Experiment()
Save the notebook, if currently editing the notebook¶
experiment.log_notebook("~/Untitled2394.ipynb") ```
Experiment.log_other¶
python
log_other(self, key, value)
Reports a key and value to the Other
tab on
Comet.ml. Useful for reporting datasets attributes, datasets
path, unique identifiers etc.
See related methods: log_parameter
and
log_metric
Args:
- key: Any type of key (str,int,float..)
- value: Any type of value (str,int,float..)
Returns: None
Experiment.log_others¶
python
log_others(self, dictionary)
Reports dictionary of key/values to the Other
tab on
Comet.ml. Useful for reporting datasets attributes, datasets
path, unique identifiers etc.
See log_other
Args:
- key: dict of key/values where value is Any type of value (str,int,float..)
Returns: None
Experiment.log_parameter¶
python
log_parameter(self, name, value, step=None)
Logs a single hyperparameter. For additional values that are not hyper parameters it's encouraged to use log_other.
See also log_parameters
.
If the same key is reported multiple times only the last reported value will be saved.
If this method is called inside a context, like test
,
train
, validate
or
context_manager
, the parameter will be stored with the
current context name as a prefix.
For example, the following code:
```python experiment = Experiment(api_key="MY_API_KEY")
with experiment.train(): experiment.log_parameter("batch_size", 64) ```
Will logs the hyper-parameter train_batch_size
.
Args:
- name: String - name of your parameter
- value: Float/Integer/Boolean/String/List
- step: Optional. Used as the X axis when plotting on Comet.ml
Returns: None
Experiment.log_parameters¶
python
log_parameters(self, parameters, prefix=None, step=None)
Logs a dictionary (or dictionary-like object) of multiple parameters. See also log_parameter.
e.g: ```python experiment = Experiment(api_key="MY_API_KEY") params = { "batch_size":64, "layer1":"LSTM(128)", "layer2":"LSTM(128)", "MAX_LEN":200 }
experiment.log_parameters(params) ```
If you call this method multiple times with the same keys your values would be overwritten. For example:
python
experiment.log_parameters({"key1":"value1","key2":"value2"})
On Comet.ml you will see the pairs of key1 and key2.
If you then call:
python
experiment.log_parameters({"key1":"other value"})l
On the UI you will see the pairs key1: other value, key2: value2
If this method is called inside a context, like test
,
train
, validate
or
context_manager
, the parameters will be stored with the
current context name as a prefix.
Experiment.log_points_3d¶
python
log_points_3d(self, scene_name, points=None, boxes=None, step=None, epoch=None)
Log 3d points and bounding boxes as an asset. You can visualize the asset with the following panel: https://www.comet.ml/docs/user-interface/panel-associations/#3d-points.
Args:
- scene_name: a string identifying the 3d scene to render. A same scene name could be logged across different steps.
- points (optional, default None): a list of points, each point being a list (or equivalent like Numpy array). Each point length should be either 3, if only the position is given: [X, Y, Z]. The length could also be 6, if color is passed as well: [X, Y, Z, R, G, B]. Red, Green and Blue should be a number between 0 and 1. Either points or boxes are required.
- boxes (optional, default None): a list of box definition Dict. Each box should match the following format:
python
{
"position": [0.5, 0.5, 0.5], # Required, [X, Y, Z]
"size": {"height": 1, "width": 1, "depth": 1}, # Required
"rotation": {"alpha": 1, "beta": 1, "gamma": 1}, # Optional, radians
"label": "prediction", # Required
"color": [1, 0, 0], # Optional, [R, G, B], values between 0 and 1.
"probability": 0.96, # Optional, value between 0 and 1.
"class": "1", # Optional
}
Either points or boxes are required.
- step: Optional. Used to associate the asset to a specific step.
- epoch: Optional. Used to associate the asset to a specific epoch.
Experiment.log_remote_asset¶
python
log_remote_asset(self, uri, remote_file_name=None, overwrite=False,
asset_type="asset", step=None, metadata=None)
Logs a Remote Asset identified by an URI. A Remote Asset is an asset but its content is not uploaded and stored on Comet. Rather a link for its location is stored so you can identify and distinguish between two experiment using different version of a dataset stored somewhere else.
Args:
- uri: String - the remote asset location, there is no imposed format and it could be a private link.
- remote_file_name: String, Optional. The "name" of the remote asset, could be a dataset name, a model file name.
- overwrite: if True will overwrite all existing assets with the same name.
- step: Optional. Used to associate the asset to a specific step.
- metadata: Some additional data to attach to the the remote asset. Must be a JSON-encodable dict.
Examples:
```python
experiment.log_remote_asset("s3://bucket/folder/file")
experiment.log_remote_asset("dataset:701bd06b43b7423296fb626027d02198") ```
Experiment.log_system_info¶
python
log_system_info(self, key, value)
Reports the key and value to the System Metric
tab on
Comet.ml. Useful to track general system information.
This information can be added to the table on the
Project view. You can retrieve this information via
the Python API.
Args:
- key: Any type of key (str,int,float..)
- value: Any type of value (str,int,float..)
Returns: None
Example:
```python
Can also use ExistingExperiment here instead of Experiment:¶
from comet_ml import Experiment, APIExperiment e = Experiment() e.log_system_info("info-about-system", "debian-based") e.end()
apie = APIExperiment(previous_experiment=e.id) apie.get_system_details()['logAdditionalSystemInfoList'] [{"key": "info-about-system", "value": "debian-based"}] ```
Experiment.log_table¶
python
log_table(self, filename, tabular_data=None, headers=False, **format_kwargs)
Log tabular data, including data, csv files, tsv files, and Pandas dataframes.
Args:
- filename: str (required), a filename ending in ".csv", or ".tsv" (for tablular data) or ".json", ".csv", ".md", or ".html" (for Pandas dataframe data).
- tabular_data: (optional) data that can be interpreted as 2D tabular data or a Pandas dataframe).
- headers: bool or list, if True, will add column headers automatically if tabular_data is given; if False, no headers will be added; if list then it will be used as headers. Only useful with tabular data (csv, or tsv).
- format_kwargs: (optional keyword arguments), when passed a Pandas dataframe
these keyword arguments are used in the conversion to "json", "csv",
"md", or "html". See Pandas Dataframe conversion methods (like
to_json()
) for more information.
See also:
- pandas.DataFrame.to_json documentation
- pandas.DataFrame.to_csv documentation
- pandas.DataFrame.to_html documentation
- pandas.DataFrame.to_markdown documentation
Examples:
```python
experiment.log_table("vectors.tsv", ... [["one", "two", "three"], ... [1, 2, 3], ... [4, 5, 6]], ... experiment.log_table("dataframe.json", pandas_dataframe) ```
See also: Experiment.log_panadas_profile()
Experiment.log_tensorflow_folder¶
python
log_tensorflow_folder(self, folder)
Logs all the tensorflow log files located in the given folder as assets.
Args:
- folder: String - the path to the folder you want to log.
Use APIExperiment.download_tensorflow_folder()
to get
the files.
Example:
```python
experiment = comet_ml.Experiment() experiment.log_tensorboard_folder("logs") api = comet_ml.API() api_experiment = api.get_experiment_by_id(experiment.id) api_experiment.download_tensorflow_folder() ```
Experiment.log_text¶
python
log_text(self, text, step=None, metadata=None)
Logs the text. These strings appear on the Text Tab in the Comet UI.
Args:
- text: string to be stored
- step: Optional. Used to associate the asset to a specific step.
- metadata: Some additional data to attach to the the text. Must be a JSON-encodable dict.
Experiment.send_notification¶
python
send_notification(self, title, status=None, additional_data=None)
Send yourself a notification through email when an experiment ends.
Args:
- title: str - the email subject.
- status: str - the final status of the experiment. Typically, something like "finished", "completed" or "aborted".
- additional_data: dict - a dictionary of key/values to notify.
Note:
In order to receive the notification, you need to have turned on Notifications in your Settings in the Comet user interface.
You can programmatically send notifications at any time during the lifecycle of an experiment.
Example:
```python experiment = Experiment()
experiment.send_notification( "Experiment %s" % experiment.get_key(), "started" ) try: train(...) experiment.send_notification( "Experiment %s" % experiment.get_key(), "completed successfully" ) except Exception: experiment.send_notification( "Experiment %s" % experiment.get_key(), "failed" ) ```
If you wish to have the additional_data
saved with the
experiment, you should also call Experiment.log_other()
with
this data as well.
This method uses the email address associated with your account.
Experiment.set_cmd_args¶
python
set_cmd_args(self)
Experiment.set_code¶
python
set_code(self, code=None, overwrite=False, filename=None)
Sets the current experiment script's code. Should be called once per experiment.
Deprecated: Use Experiment.log_code()
Args:
- code: optional, string: experiment source code.
- overwrite: optional, bool: if True, send the code
- filename: optional, str: name of file to get source code from
Experiment.set_epoch¶
python
set_epoch(self, epoch)
Sets the current epoch in the training process. In Deep Learning each epoch is an iteration over the entire dataset provided. This is used to generate plots on comet.ml. You can also pass the epoch directly when reporting log_metric.
Args:
- epoch: Integer value
Returns: None
Experiment.set_filename¶
python
set_filename(self, fname)
Sets the current experiment filename. Args:
- fname: String. script's filename.
Experiment.set_model_graph¶
python
set_model_graph(self, graph, overwrite=False)
Sets the current experiment computation graph. Args:
- graph: String or Google Tensorflow Graph Format.
- overwrite: Bool, if True, send the graph again
Experiment.set_name¶
python
set_name(self, name)
Set a name for the experiment. Useful for filtering and searching on Comet.ml.
Will shown by default under the Other
tab.
Args:
- name: String. A name for the experiment.
Experiment.set_os_packages¶
python
set_os_packages(self)
Reads the installed os packages and reports them to server as a message. Returns: None
Experiment.set_pip_packages¶
python
set_pip_packages(self)
Get the installed pip packages using pkgresources and reports them to server as a message. Returns: None
Experiment.set_step¶
python
set_step(self, step)
Sets the current step in the training process. In Deep Learning each step is after feeding a single batch into the network. This is used to generate correct plots on Comet.ml. You can also pass the step directly when reporting log_metric, and log_parameter.
Args: step: Integer value
Returns: None
Experiment.stop_early¶
python
stop_early(self, epoch)
Should the experiment stop early?
Experiment.test¶
python
test(*args, **kwds)
A context manager to mark the beginning and the end of the testing phase. This allows you to provide a namespace for metrics/params. For example:
python
with experiment.test():
pred = model.predict(x_test)
test_acc = compute_accuracy(pred, y_test)
experiment.log_metric("accuracy", test_acc)
# this will be logged as test accuracy
# based on the context.
Experiment.train¶
python
train(*args, **kwds)
A context manager to mark the beginning and the end of the training phase. This allows you to provide a namespace for metrics/params. For example:
python
experiment = Experiment(api_key="MY_API_KEY")
with experiment.train():
model.fit(x_train, y_train)
accuracy = compute_accuracy(model.predict(x_train),y_train)
# returns the train accuracy
experiment.log_metric("accuracy",accuracy)
# this will be logged as train accuracy based on the context.
Experiment.validate¶
python
validate(*args, **kwds)
A context manager to mark the beginning and the end of the validating phase. This allows you to provide a namespace for metrics/params. For example:
python
with experiment.validate():
pred = model.predict(x_validation)
val_acc = compute_accuracy(pred, y_validation)
experiment.log_metric("accuracy", val_acc)
# this will be logged as validation accuracy
# based on the context.